Speer Lab

 
 

Research

Overview

The complexity and precision of the nervous system is organized over time by a combination of nature and nurture. We are interested in understanding how molecular and activity-dependent mechanisms drive the development of neural circuits for sensory perception.

 

visual circuit development

We study the mammalian visual system as a model for exploring how brain circuits emerge and remodel early in life. The connections from the eyes to the brain undergo remarkable developmental reorganization to enable visual processing of motion, color, contrast, and luminance in parallel neural circuits. We use cutting edge techniques to monitor and manipulate the structure, function, and developmental plasticity of neural pathways from the eyes to the brain. Our goal is to understand the logic of parallel visual circuits and contribute new discoveries that will help lead to treatments for developmental disorders and blinding diseases. 

 

Our tools

We target specific cell types and circuits in the developing visual system using genetic transfection techniques, tract tracing, and transgenic models. We investigate synaptic connectivity with electron microscopy and custom multi-color volumetric super-resolution microscopy for reconstructing microcircuits with molecular specificity at the nanoscale. To interrogate neuronal function we use electrophysiological recording and optical imaging approaches. We leverage the power of high-performance computing to mine new biological insights from big data.

 
 

“Since the full grown forest appears to be impenetrable and undefinable,

why not revert to the study of the young wood,

in the nursery stage, as we might say?"

-Santiago Ramón y Cajal

speer_glycine_receptors_rotated2.jpg